What is a solution?

Definition:
A solution of the initial value problem

d
a%:f(t,y) with y = yg for t =t
is a differentiable function defined on an interval (a, 3) containing

to that satisfies both the differential equation and the initial
condition.

Note:

To distinguish between the unknown y in the problem statement
and a specific candidate for this unknown, we might write

y = ¢(t) and then require

¢'(t) = f(t,o(t)) for all tin (a, B) with o(to) = yo.
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What is a solution?

Example:

dy

dt:y with y =5for t =0

One solution is y = 5ef for t in (—1,1).

Another solution is y = 5e' for t in (—o0, 00).

We say that this second solution is an extension of the first
solution.

In fact, it is the maximal extension since the domain cannot
be extended further.
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An existence-uniqueness theorem: informal

Theorem (informal):
If f and Of /Oy are continuous for all points in the ty-plane near
(to, ¥0), then there is a unique solution to the initial value problem

d .
= fey)  with o y(0) =

Notes:

e Need to be clear on what “points near (to, yo)" means.
e Need to be clear on domain of the solution.

o For existence, need only continuity of f. For uniqueness, need
continuity of both f and 9f /dy.
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An existence-uniqueness theorem: precise

Theorem:
If f and Of /Oy are continuous in a rectangle
{(t,y)|a <t < b,c <y < d} containing (ty, yo), then there is a
value € > 0 defining an interval (tp — €, to + €) for which there is a
unique solution to the initial value problem

dy

Ezf(t,y) with  y(to) = yo.

Note:

e Uniqueness means that if y; and y» are functions defined for
(to — €, to + €) and each satisfies the IVP, then

yi1(t) = yo(t) for all tin (to — €, to + €).

e No guarantee about solution or uniqueness extending beyond
the interval (ty — €, to + €).
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