What is a solution?

Definition:

A solution of the initial value problem

$$\frac{dy}{dt} = f(t, y)$$
 with $y = y_0$ for $t = t_0$

is a differentiable function defined on an interval (α, β) containing t_0 that satisfies both the differential equation and the initial condition.

Note:

To distinguish between the unknown y in the problem statement and a specific candidate for this unknown, we might write $y = \phi(t)$ and then require

$$\phi'(t) = f(t, \phi(t))$$
 for all t in (α, β) with $\phi(t_0) = y_0$.

What is a solution?

Example:

$$\frac{dy}{dt} = y$$
 with $y = 5$ for $t = 0$

- One solution is $y = 5e^t$ for t in (-1, 1).
- Another solution is $y = 5e^t$ for t in $(-\infty, \infty)$.
- We say that this second solution is an *extension* of the first solution.
- In fact, it is the *maximal extension* since the domain cannot be extended further.

Theorem (informal):

If f and $\partial f / \partial y$ are continuous for all points in the *ty*-plane near (t_0, y_0) , then there is a unique solution to the initial value problem

$$\frac{dy}{dt} = f(t, y)$$
 with $y(t_0) = y_0$.

Notes:

- Need to be clear on what "points near (t_0, y_0) " means.
- Need to be clear on domain of the solution.
- For existence, need only continuity of *f*. For uniqueness, need continuity of both *f* and ∂*f*/∂*y*.

Theorem:

If f and $\partial f/\partial y$ are continuous in a rectangle $\{(t, y) | a < t < b, c < y < d\}$ containing (t_0, y_0) , then there is a value $\epsilon > 0$ defining an interval $(t_0 - \epsilon, t_0 + \epsilon)$ for which there is a unique solution to the initial value problem

$$\frac{dy}{dt} = f(t, y)$$
 with $y(t_0) = y_0$.

Note:

• Uniqueness means that if y_1 and y_2 are functions defined for $(t_0 - \epsilon, t_0 + \epsilon)$ and each satisfies the IVP, then

$$y_1(t) = y_2(t)$$
 for all t in $(t_0 - \epsilon, t_0 + \epsilon)$.

 No guarantee about solution or uniqueness extending beyond the interval (t₀ - ε, t₀ + ε).

Existence and Uniqueness Theorem